

Course Information Document: Undergraduate

For students starting in Academic Year 2017/2018

1. Course Summary

Names of programme(s) and award title(s)	BSc (Hons) Physics with Astrophysics		
	BSc (Hons) Physics with Astrophysics with International Year		
	(see Annex A for details)		
Award type	Single Honours		
Mode of study	Full time		
Framework of Higher Education Qualification	Level 6		
(FHEQ) level of final award			
Duration	3 years		
	4 years with International Year		
Location of study	Keele University – main campus		
Accreditation (if applicable)	This programme will be put forward for accreditation by the		
	Institute of Physics (IoP) – for further details see Section 12		
Regulator	Higher Education Funding Council for England (HEFCE)		
Tuition Fees	UK/EU students:		
	Fee for 2017/18 is £9,250*		
	International students:		
	Fee for 2017/18 is £15,250**		
	The fee for the international year abroad is calculated at		
	15% of the standard year fee		
Additional Costs	Refer to section 16		

How this information might change: Please read the important information at http://www.keele.ac.uk/student-agreement/. This explains how and why we may need to make changes to the information provided in this document and to help you understand how we will communicate with you if this happens.

2. What is a Single Honours programme?

The Single Honours programme described in this document allows you to focus more or less exclusively on Physics with Astrophysics. In keeping with Keele's commitment to breadth in the curriculum, the programme also gives you the opportunity to take some modules outside Physics with Astrophysics, in other disciplines and in modern foreign languages as part of a 360-credit Honours degree. Thus it enables you to gain, and be able to demonstrate,

^{*}These fees are regulated by Government. We reserve the right to increase fees in subsequent years of study in response to changes in government policy and/or changes to the law. If permitted by such change in policy or law, we may increase your fees by an inflationary amount or such other measure as required by government policy or the law. Please refer to the accompanying Student Terms & Conditions. Further information on fees can be found at http://www.keele.ac.uk/studentfunding/tuitionfees/

^{**} We reserve the right to increase fees in subsequent years of study by an inflationary amount. Please refer to the accompanying Student Terms & Conditions for full details. Further information on fees can be found at http://www.keele.ac.uk/studentfunding/tuitionfees/

a distinctive range of graduate attributes.

3. Overview of the Programme

Physics and Astrophysics are fundamental, curiosity-driven science subjects that have applications and make an enormous contribution to other areas of science and a range of industries such as power, nuclear, electronics, IT, data-mining, telecommunications, medical, pharmaceutical and food technology.

The broad educational aims of this programme are informed by the QAA Benchmark Statement for Physics. The programme aims to provide a thorough education in the core areas of physics (as defined by the Institute of Physics [IoP] accreditation standards), to extend and apply this subject knowledge to the arena of Astrophysics and to study more advanced topics, informed by the research interests of staff, together with providing a theoretical and practical understanding of the analytical, experimental and computational techniques that are of particular importance to physics graduates. Successful graduates will have achieved a demonstrable understanding of the fundamentals of physics and astrophysics, and be able to apply this knowledge to solve problems, plan investigations, analyse results and to report and present their work in ways described in more detail below.

On successful completion of the Physics with Astrophysics programme at Keele, students will be equally qualified and well prepared for postgraduate studies or for graduate level employment in a wide variety of industrial sectors. Tuition will be based on a modular system with varied modes of delivery, ranging from traditional lectures through to laboratory work, problem-solving classes and tutorials in smaller groups. Mathematics and computing form important parts of the programme and are taught both within dedicated modules and synoptically throughout the programme by staff in the Physics/Astrophysics department. A mixed set of assessment modalities include examination, report-writing, presentations, problem sheets, laboratory work, essays, dissertations and vivas, with an overall balance of approximately 50% examination and 50% continually assessed, dependent on the exact module diet.

Whilst the dual honours Physics and Astrophysics programmes focus almost exclusively on the IoP "core curriculum" in years 1 and 2, the Single Honours Physics with Astrophysics programme goes beyond this in terms of breadth and depth. The core of Astrophysics (Astronomy, Stellar Physics, Galaxies and Cosmology) are included and there is an additional emphasis on Mathematics, Statistics and Computing and the application of Physics/Astrophysics to solving problems; further opportunities for both individual and team practical work and an individual dissertation in year 3.

4. Aims of the Programme

The broad aims of the programme are to enable you to:

- achieve a knowledge and understanding of the fundamentals of Physics and Astrophysics, and be able to apply
 this knowledge and understanding to solving problems;
- develop competence in mathematical, statistical and numerical techniques and employ these to solve physical problems;
- develop competence in laboratory activities and computer programming by the end of year 2 and undertake project work both individually and within a team by the end of year 3;
- acquire the skills required to assimilate new knowledge and to communicate your work and ideas in a variety
 of formats;
- acquire a range of subject-specific skills including how to formulate and tackle problems in Physics/Astrophysics; how to plan, manage, execute and report the results of an investigation; how to use mathematics to describe the physical world; and how to deploy these skills to tackle issues within the subject;
- acquire a range of cognitive, generic and transferable skills including problem-solving skills, investigative skills, analytic skills, communication skills, IT skills, time management skills and interpersonal skills.

Employability

The programme will enable you to:

- engage in independent learning, and to make use of textbooks, research papers and other learning resources;
- critically analyse data, understand statistical information and to use information responsibly and ethically;
- plan projects and investigations, and perform an evaluation of the possible costs and benefits of a course of action;
- develop a range of technical and transferrable skills which would enable entry to employment across a
 range of professions that place high value on the analytical, computational, statistical and experimental
 skills gained within a Physics with Astrophysics degree programme and value the ability to communicate
 complex ideas and information to a variety of audiences.

5. What you will learn

The intended learning outcomes of the programme (what students should know, understand and be able to do at the end of the programme), can be described under the following headings:

- Subject knowledge and understanding
- Subject specific skills
- Intellectual skills
- Key or transferable skills (including employability skills)

Subject knowledge and understanding

The subject knowledge in the Single Honours Physics with Astrophysics programme is underpinned by a core Physics curriculum as set out by the Institute of Physics and includes the fundamentals of classical and quantum mechanics, electromagnetism, optics, thermodynamics, solid state, atomic and nuclear physics, together with the mathematics that is used to describe them. The programme goes beyond this to explore fundamental topics in Astrophysics – stellar structure, galaxies and cosmology. There is further work in mathematics, computational and statistical techniques and the applications of these in addressing (astro)physical problems.

Successful students will be able to demonstrate:

- knowledge of the fundamental principles of (Astro)physics and competence in applying these principles to diverse areas of the subject;
- the ability to solve problems in (Astro)physics using appropriate mathematical and computational tools including the ability to make sensible approximations;
- the ability to design, execute, and analyse critically, an experiment or investigation and draw valid conclusions;
- the ability to estimate levels of uncertainty in their results, compare their results with expected outcomes, theoretical predictions or published data, and evaluate the significance of their results in this context;
- the development of a wider knowledge and understanding of advanced topics and their applications, and the acquisition of skills in the critical reading and understanding of published work in (Astro)Physics.

Subject specific skills

Successful students will have:

- the ability to work safely in a laboratory or observatory, and a knowledge and awareness of standard safety procedures;
- a sound familiarity with laboratory/astronomical apparatus and techniques;
- competency in the use of appropriate IT packages/systems for the analysis of data and the retrieval of information;
- an ability in numerical manipulation and estimation, statistical interpretation and the ability to present and interpret information graphically;
- an ability to use mathematical analysis and computational techniques to model physical behaviour;
- an ability to research, record and communicate scientific information, in particular through clear and

- accurate scientific reports and a dissertation;
- an ability to question, learn and assimilate knowledge and to evolve their views of the world in response to that new knowledge;
- an ability to contribute through research to the development of knowledge in (Astro)physics;
- an ability to acquire knowledge and understanding of science themselves, and to work productively on scientific problems on an individual basis or in a team.

Intellectual skills

Successful students will be able to:

- analyse and solve problems;
- evaluate evidence and make critical judgements;
- interpret and critique text;
- interpret and critique mathematical and numerical information;
- abstract and synthesise information;
- develop a reasoned argument;
- assess contrasting theories, explanations and policies on the basis of evidence;
- take responsibility for their own learning and critique that learning.

Key or transferable skills (including employability skills)

Successful students will have the ability to:

- manage their own learning and to make appropriate use of textbooks, research-based materials and other learning resources;
- find information and make responsible use of it;
- make effective written and oral presentations;
- work with numerical and statistical data;
- make sensible estimates;
- evaluate the costs and benefits of their actions;
- work effectively with a variety of types of Information Technology;
- formulate a problem and solve it using computational methods;
- plan, manage, execute and report an investigation;
- learn and gain understanding and to pass on that understanding to others;
- work effectively both as an individual and as part of a team;
- sustain motivation for an extended period of time;
- recognise their responsibilities as an individual and as part of a team or an organisation.

6. How is the Programme taught?

Learning and teaching methods used on the programme vary according to the subject matter and level of the module. They include the following:

- Lectures;
- Tutorials;
- Laboratory and Observatory classes;
- Computational laboratory classes;
- Exercise/problem-solving classes;
- Individual progress interviews;
- Problem sheet assignments;
- Group and individual projects;
- Directed reading and independent study;
- Literature research tasks;
- Use of e-learning/the Keele Learning Environment (KLE).

In a typical week, a student would expect to be engaged in the majority of these activities. Students are also

provided with regular opportunities to talk through particular areas of difficulty and any special learning needs they may have with their Personal Tutors or module lecturers on a one-to-one basis.

Much of the core knowledge in Physics/Astrophysics is described and explained in lectures. These lectures also map out the academic content and are used to provide examples and case studies. The application of this knowledge is developed in tutorials and problem classes, where there is a greater emphasis on co-operative learning in a more informal setting. Laboratory work, observatory sessions and computational classes are designed to reinforce material covered in lectures, but more importantly to foster the many transferable skills discussed in section 2. Students will also gain experience of planning and performing investigations and reporting on them both individually and as part of a team.

All students are also expected to engage in independent learning, with regular directed reading, literature research and assessed problem sheets. In this way they will advance their own understanding but also develop their critical abilities and capabilities for discrimination between different sources of information, the merits of different theories and ideas etc. Students will be expected to manage their time against known targets and deadlines, take responsibility for their own learning and acquire a reflective, self-critical attitude to their own work – attributes that will serve them well in their ongoing professional development.

All modules make extensive use of the Keele Learning Environment (KLE) to post learning resources; these include (and vary from module to module) lecture notes, module and laboratory handbooks, exercises, quizzes, assignments, problem sheets, interesting web links, additional reading; screencasts; collaborative pages. The KLE is also used for electronic submission of course work and feedback in some cases.

Apart from these formal activities, students are also provided with regular opportunities to talk through particular areas of difficulty, and any special learning needs they may have, with their Personal Tutors or module lecturers on a one-to-one basis.

7. Teaching Staff

The Physics/Astrophysics academic staff exhibit a research profile with two main areas of expertise; astrophysics and condensed matter physics. Keele performs internationally renowned work in the fields of exoplanets, stellar physics (both observational and theoretical), high energy extragalactic astrophysics and in the study of soft condensed matter such as polymers and biological molecules. All research-active staff play a role in teaching and most also undertake administrative roles, either within our teaching or research activities. The teaching and research profiles of the staff that currently deliver the Physics with Astrophysics programme can be found at http://www.keele.ac.uk/physics/people/. Timetabled teaching is always lead by academic staff.

The University will attempt to minimise changes to our core teaching teams, however, delivery of the programme depends on having a sufficient number of staff with the relevant expertise to ensure that the programme is taught to the appropriate academic standard.

Staff turnover, for example where key members of staff leave, fall ill or go on research leave, may result in changes to the programme's content. The University will endeavour to ensure that any impact on students is limited if such changes occur.

8. What is the Structure of the Programme?

The academic year runs from September to June and is divided into two semesters. The number of weeks of teaching will vary from course to course, but you can generally expect to attend scheduled teaching sessions between the end of September and mid-December, and from mid-January to the end of April.

Our degree courses are organised into modules. Each module is usually a self-contained unit of study and each is usually assessed separately with the award of credits on the basis of 1 credit = 10 hours of student effort. An outline of the structure of the programme is provided in the tables below.

There are two types of module delivered as part of this programme. They are:

Compulsory core module – a module that you are required to study on this course;

Optional core module – these allow you some limited choice of what to study from a list of modules;

Year 1 (Level 4)

At level 4, Physics/Astrophysics students require a common knowledge and skills base. In the Single Honours Physics with Astrophysics programme students study eight core modules, all worth 15 credits, over the first two semesters of the programme. These consist of four modules that directly address core material as specified by the IoP, which include distinct mathematics and laboratory components. These four modules are common to the dual honours Physics programme. There are then four other modules that introduce Astrophysics and develop much broader physical, mathematical, computational, statistical and laboratory competencies. There is one module and several other components of laboratory, observatory and project work that are distinct from the single honours Physics programme, but transfer between these two programmes is possible at any point before semester 2 of year 1.

These modules are taught through a mixture of traditional lectures, problem class learning, smaller group tutorials and practical and computer-based laboratory work. The module descriptors provide detailed synopses of each module with suggested study reading and are available on the KLE.

Five of the modules are taught within a single semester (two in semester 1 and three in semester 2). Three of the modules have elements of teaching and assessment over both semesters, though they are designed so that there is roughly equal student workload in each semester when considering the programme as a whole.

Semester 1	Semester 2			
PHY-10022 Mechanics, Gravity and Relativity (15 Cr)	PHY-10020 Oscillations and Waves (15 Cr)			
PHY-10024 Nature of Matter (15 Cr)	PHY-10023 Electricity and Magnetism (15 Cr)			
	PHY-10029 Introduction to Astronomy and Stellar Structure (15 Cr)			
PHY-10030 Scientific Practice (15 Cr)				
PHY-10028 Scientific Programming (15 Cr)				
PHY-10032 Applied Mathematics and Statistics (15 Cr)				

Year 2 (Level 5)

At level 5 students continue to be taught the fundamentals of Physics/Astrophysics, with three core modules that directly address the IoP core physics curriculum, two core modules dealing with the astrophysical fundamentals of Stellar structure and Galaxies, and additional core modules that are specific to the single honours programmes that further develop the skills of mathematical and computational analysis and discuss the application of physics to contemporary topics such as power generation, novel technologies and the environment.

All of these modules are worth 15 credits and all modules are taught and assessed within a single semester.

Semester 1	Semester 2
PHY-20006 Quantum Mechanics (15 Cr)	PHY-20026 Statistical Mechanics and Solid State Physics (15 Cr)
PHY-20027 Optics and Thermodynamics (15 Cr)	PHY-20002 Stellar Astrophysics (15 Cr)
PHY-20032 Mathematical Physics (15 Cr)	PHY-20033 Applied Physics and Emerging Technologies (15 Cr)
PHY-20030 Numerical Methods(15 Cr)	PHY-20028 Galaxies (15 Cr)

Year 3 (Level 6)

At level 6 there are four core modules: Electromagnetism, Cosmology and students will complete a dissertation and a research project that combines elements of team and individual work. In addition, students will choose four option modules from a list of available modules. Note that not all option modules may run in any given year, dependent on student preferences and staff availability.

Semester 1	Semester 2		
Compulsory Core modules	Compulsory Core modules		
PHY-30012 Electromagnetism (15 Cr)	PHY-30001 Cosmology (15 Cr)		
PHY-30006 Astrophysics Project and Communication Skills	s (15 Cr, Semesters 1 & 2)		
PHY-30017 Astrophysics Dissertation and Communication	Skills (15 Cr, Semesters 1 & 2)		
Plus 4 Option Mod	lules from*:		
(Option modules may be run in either semester)			
PHY-30010 Polymer Physics (15 Cr)	PHY-30002 Physics of the Interstellar Medium (15		
	Cr)		
PHY-30033 Particle Physics and Accelerators (15 Cr)	PHY-30003 The Physics of Compact Objects (15		
	Cr)		
PHY-30024 Binary Stars and Extrasolar Planets (15 Cr)	PHY-30025 Life in the Universe (15 Cr)		
PHY-30031 Atmospheric Physics (15 Cr)	PHY-30029 Quantum Mechanics II (15 Cr)		
PHY-30027 Data Analysis and Model Testing (15 Cr)	PHY-30030 Physics of Fluids (15 Cr)		
PHY-30032 Plasma Physics (15 Cr)			

^{*}The Optional core modules and their timing may vary each year depending on student preferences and staff availability.

Students may also take a 15 credit free elective module instead of one of the option modules above, subject to timetabling constraints.

Our teaching puts an emphasis on problem solving. This occurs in problem classes where practice problems are solved with staff and teaching assistants available to help; in laboratory teaching where practical and computational problems are addressed; and in directed work for assessment. Students are encouraged to call upon module leaders and year tutors for guidance. The staff will be willing to see students at almost any time (we operate an "open-door" policy) and there will be one-to-one progress interviews each semester. The teaching team will monitor progress and attendance, and will contact students if they are not achieving and advise on improvement strategies.

Students benefit from a flexible approach to learning the mathematical and computational skills that are essential to the learning and application of (Astro)physics. In years 1 and 2 there are dedicated Mathematics modules but Mathematics is also embedded as part of several other modules in each year. Similarly, although programming and computational skills are taught in specific modules, there is an expectation that these skills will increasingly

be put into practice in later modules.

For further information on the content of modules currently offered please visit: www.keele.ac.uk/recordsandexams/az

9. Final and intermediate awards

Credits required for each level of academic award are as follows:

Honours Degree	360 credits	You will require at least 120 credits at levels 4, 5 and 6 You must accumulate at least 255 credits in Physics with Astrophysics (out of 360 credits overall), with at least 60 credits in each of the three years of study, to graduate with a named single honours degree in Physics with Astrophysics.
Diploma in Higher Education	240 credits	You will require at least 120 credits at level 4 or higher and at least 120 credits at level 5 or higher
Certificate in Higher Education	120 credits	You will require at least 120 credits at level 4 or higher

Physics with Astrophysics with International Year: in addition to the above students must pass a non-credit bearing module covering the international year in order to graduate with a named degree in Physics with Astrophysics with international year. Students who do not complete, or fail the international year, will be transferred to the three-year Physics with Astrophysics programme.

10. How is the Programme assessed?

Year 1 (Level 4) lecture modules are assessed by a mixture of continuous assessment (mostly in the form of problem classes, problem sheets, laboratory work and laboratory reports, though also including at least one oral presentation and some short essays) and examination. A risk assessment also forms part of the laboratory work. The skills component of these modules is assessed on your work at the bench, your understanding of the experiment as displayed in discussion with the staff in the laboratory and in the laboratory reports you are required to write. Problem classes and tests that occur periodically throughout the year specifically assess the mathematics component, although mathematics is an embedded and inherent part of all other assessments including examinations and problem sheets. The computational strand is assessed specifically by computer tests and project work. The module marks from FHEQ Level 4 count for progression purposes but do not contribute to any final degree classification.

Year 2 (Level 5) lecture modules are assessed by a mixture of continuous assessment (mostly in the form of problem classes and problem sheets), laboratory work and examination. Laboratory work is assessed on your work at the bench, your understanding of the experiment as displayed in discussion with the staff in the laboratory and in the laboratory reports you are required to write, both individually and as part of a team. A risk assessment also forms part of the assessed laboratory work. The laboratory work is connected to the content of the lecture modules and the marks for the laboratory are therefore convolved with the examination and continuous assessment marks to give a final mark for each module. There are also specific class tests associated with Computing and Mathematics. The module marks from FHEQ Level 5 count towards progression and also make up one third of the aggregate marks for the purposes of final degree classification.

Year 3 (Level 6) modules are self-contained. Lecture modules are assessed using a mixture of continuous assessment (mostly in the form of problem sheets, though some feature essays, mini-projects or computer exercises) and examination. The Astrophysics project and Communication Skills module is assessed in terms of the originality and ingenuity you display, the quality and methods of research employed and on the final report. You are also given the opportunity to display these qualities in writing a short article, preparing an oral presentation and the report produced as part of a team. The Dissertation module is assessed on the scientific content and presentation of the dissertation and also on an oral presentation and a poster presentation that you are required

to produce. The module marks for FHEQ Level 6 make up two thirds of the aggregate marks for the purposes of degree classification.

The wide variety of assessment methods used within Physics with Astrophysics at Keele reflects the broad range of knowledge and skills that are developed as you progress through the degree programme. Teaching staff pay particular attention to specifying clear assessment criteria and providing timely, regular and constructive feedback that helps to clarify things you did not understand and helps you to improve your performance.

The following list is representative of the variety of assessment methods used within Physics and Astrophysics:

- **End of module examinations** test the ability of the student to describe, explain, and critically discuss the principles of the subject and to demonstrate competence in applying these principles to applications and to solve problems from appropriate areas of the discipline.
- Assessed Problem Sheets assess the student's skills in solving numerical and other problems within the
 discipline by drawing on their scientific understanding and knowledge, and experience of experimental
 techniques. Students may also be assessed on their skills of research and communication and on their
 ability to deploy appropriate mathematical, computational and numerical techniques.
- Laboratory and Project Reports structured proformas and full lab reports are formal summaries of work carried out in the laboratory and test students' understanding of the practical aspects of the programme and assess the skills necessary to enable students to present and analyse their results.
- Observation of laboratory skills and laboratory notebooks: Throughout the extensive laboratory and
 other practical work in this programme, many types of assessment are utilised to achieve the learning
 outcomes. Notebooks are used to communicate the results of work accurately and reliably and to
 encourage good working practice, including managing risk assessments and following safe working
 practices.
- Oral and/or Poster presentations on project work demonstrate the ability of the student to present complex concepts and information in a clear and concise manner, to interact and communicate effectively to a wide range of professional environments, including to both scientific and non-scientific audiences. They also test how effectively students have been able to research and sift information.
- In-class exercises and tests taken either conventionally or online via the Keele Learning Environment (KLE) assess students' subject knowledge and their ability to apply it in a more structured and focused way.
- Group oral presentations and reports assess individual student's subject knowledge and understanding.
 They also test their ability to work effectively as members of a team, to communicate what they know orally and visually, and to reflect on these processes as part of their own personal development.
- **Engagement with problem classes** assess the extent to which students are able to work on problems and present their solutions in a logical, structured and coherent way.
- **Dissertation** assesses the student's ability to engage with an advanced area of physics, to research and sift information, and to communicate effectively via an extended piece of writing.
- **Computing Tests** specifically assess a student's computational skills and their ability to design and produce code to solve (astro)physics problems.
- **Mini-projects** short projects that form a minor part of module assessments designed to test subject knowledge but also to assess many of the skills components.
- **Risk assessments** are produced by students to test their appreciation of how to design experiments and consider the health and safety aspects of their work.

Marks are awarded for summative assessments designed to assess your achievement of learning outcomes. You will also be assessed formatively to enable you to monitor your own progress and to assist staff in identifying and

addressing any specific learning needs. Feedback, including guidance on how you can improve the quality of your work, is also provided on all summative assessments within three working weeks of submission, unless there are compelling circumstances that make this impossible, and more informally in the course of tutorial and seminar discussions.

11. Contact Time and Expected Workload

This contact time measure is intended to provide you with an indication of the type of activity you are likely to undertake during this programme. The data is compiled based on module choices and learning patterns of students on similar programmes in previous years. Every effort is made to ensure this data is a realistic representation of what you are likely to experience, but changes to programmes, teaching methods and assessment methods mean this data is representative and not specific.

Undergraduate courses at Keele contain an element of module choice; therefore, individual students will experience a different mix of contact time and assessment types dependent upon their own individual choice of modules. The figures below are an example of activities that a student may expect on your chosen course by year/stage of study. Contact time includes scheduled activities such as: lecture, seminar, tutorial, project supervision, demonstration, practical classes and labs, supervised time in labs/workshop, fieldwork and external visits. The figures are based on 1,200 hours of student effort each year for full-time students.

Activity	Year 1 (Level 4)	Year 2 (Level 5)	Year 3 (Level 6)
Scheduled learning and	33%	29%	35%
teaching activities			
Guided independent	67%	71%	65%
Study			
Placements	0%	0%	0%

12. Accreditation

This subject/programme will be put forward for accreditation by The Institute of Physics (IoP). The dual honours Physics and Major honours Physics programmes that form a *subset* of Single Honours Physics have already achieved full accreditation. Please note the following:

 Graduates with accredited BSc degrees are eligible for Associate Membership of the IoP. After a period of relevant post-degree experience and professional development they may apply for full membership of the IoP and for Chartered Physicist status.

13. Regulations

The University Regulations form the framework for learning, teaching and assessment and other aspects of the student experience. Further information about the University Regulations can be found at: http://www.keele.ac.uk/student-agreement/

14. What are the typical admission requirements for the programme?

Subject	A-level	Subjects not included	International Baccalaureate	BTEC	Access to Higher Education Diploma	GCSE requirements
Physics with	ABC	General	32 points to	DDD	Access to HE	Maths @ C (or
Astrophysics		Studies	include Higher	You must have taken	Diploma with 45	4) if not taken
(Single	Including A level Physics	and Critical	Level Physics and	sufficient units with	L3 credits,	at A level.
Honours)	and Maths with a grade A	Thinking	Maths at 5 and 6	Physics/Mathematics	including	English
	required in either Physics		in any order.	content. Please	Distinction in at	Language @ C
	or Maths.			contact us for advice	least 30 suitable	(or 4)
					L3 credits in	
	***A Pass in Physics				Physics and	
	Science Practical will be				Mathematics.	ļ
İ	required if applicant is				You must also	ļ
İ	taking A level Physics				have taken	

(England)**		sufficient Physics
		and
** Science practical only		Mathematics
required from applicants		credits, please
taking reformed A level		contact us for
Biology, Chemistry or		advice.
Physics in England.		
*** If applicant has not		
had opportunity to sit A		
level in England, please		
contact		
admissions@keele.ac.uk		

Applicants who are not currently undertaking any formal study or who have been out of formal education for more than 3 years and are not qualified to A-level or BTEC standard may be offered entry to the University's Foundation Year Programme.

Applicants for whom English is not a first language must provide evidence of a recognised qualification in English language. The minimum score for entry to the Programme is Academic IELTS 6.0 or equivalent.

Please note: All non-native English speaking students are required to undertake a diagnostic English language assessment on arrival at Keele, to determine whether English language support may help them succeed with their studies. An English language module may be compulsory for some students during their first year at Keele.

Accreditation of Prior Learning (APL) is considered on a case-by-case basis and those interested should contact the Programme Director. The University's guidelines on this can be found here: http://www.keele.ac.uk/qa/accreditationofpriorlearning/

15. Other learning opportunities

Study abroad (semester)

Students on the Physics with Astrophysics programme have the potential opportunity to spend a semester abroad in their second year studying at one of Keele's international partner universities.

Exactly which countries are available depends on the student's choice of degree subjects. An indicative list of countries is on the website (http://www.keele.ac.uk/studyabroad/partneruniversities/); however this does not guarantee the availability of study in a specific country as this is subject to the University's application process for studying abroad.

No additional tuition fees are payable for a single semester studying abroad but students do have to bear the costs of travelling to and from their destination university, accommodation, food and personal costs. Depending on the destination they are studying at additional costs may include visas, study permits, residence permits, and compulsory health checks. Students should expect the total costs of studying abroad to be greater than if they study in the UK, information is made available from the Global Education Team throughout the process, as costs will vary depending on destination

Whilst students are studying abroad any Student Finance eligibility will continue, where applicable students may be eligible for specific travel or disability grants. Students studying in Erasmus+ destinations may be eligible for grants as part of this programme. Students studying outside of this programme may be eligible for income dependent bursaries at Keele.

Students travel on a comprehensive Keele University insurance plan, for which there are currently no additional charges. Some governments and/or universities require additional compulsory health coverage plans; costs for this will be advised during the application process.

Study Abroad (International Year)

A summary of the International Year, which is a potential option for students after completion of year 2 (Level 5), is provided at Annex A.

Other opportunities

There are other opportunities such as the *Student Ambassador Scheme* and *e-mentoring scheme* for students to enhance their employability skills.

16. Additional costs

As to be expected there will be additional costs for inter-library loans and potential overdue library fines, print and graduation.

These costs have been forecast by the University as accurately as possible but may be subject to change as a result of factors outside of our control (for example, increase in costs for external services). Forecast costs are reviewed on an annual basis to ensure they remain representative. Where additional costs are in direct control of the University we will ensure increases do not exceed 5%.

We do not anticipate any further costs for this undergraduate programme.

17. Document Version History

Version history	Date	Notes
Date first created	December 2016	
Revision history	Amendments made following scrutiny meeting, March 2017	
Date approved	June 2017	ULTC

Annex A

Physics with Astrophysics with International Year

International Year Programme

Students registered for Single Honours Physics with Astrophysics may either be admitted for or apply to transfer during their period of study at Level 5 to the Single Honours 'Physics with Astrophysics with International Year'. Students accepted onto this programme will have an extra year of study (the International Year) at an international partner institution after they have completed Year 2 (Level 5) at Keele.

Students who successfully complete both the second year (Level 5) and the International Year will be permitted to progress to Level 6. Students who fail to satisfy the examiners in respect of the International Year will normally revert to the BSc (Hons) Physics with Astrophysics and progress to Level 6 on that basis. The failure will be recorded on the student's final transcript.

Study at Level 4, Level 5 and Level 6 will be as per the main body of this programme specification. The additional detail contained in this annex will pertain solely to students registered for 'Physics with Astrophysics with International Year'.

International Year Programme Aims

In addition to the programme aims specified in the main body of the programme specification, the international year programme of study aims to provide students with:

- 1. Personal development as a student and a researcher with an appreciation of the international dimension of their subject
- 2. Experience of a different culture, academically, professionally and socially

Entry Requirements for the International Year

Students may apply to the 4-year programme during Level 5. Admission to the International Year is subject to successful application, interview and references from appropriate staff.

The criteria to be applied are:

- 1. Academic Performance (an average of 60% across all modules at Level 5 is normally required)
- General Aptitude (to be demonstrated by application for study abroad, interview during the 2nd semester of year 2 (Level 5), and by recommendation of the student's personal tutor, 1st and 2nd year tutors and programme director)

Student Support

Students will be supported whilst on the International Year via the following methods:

- Phone or Skype conversations with Study Abroad tutor, in line with recommended Personal Tutoring meeting points.
- Support from the University's Global Education Team

Learning Outcomes

In addition to the learning outcomes specified in the main text of the Programme Specification, students who complete a Keele undergraduate programme with International Year will be able to:

- Describe, discuss and reflect upon the cultural and international differences and similarities of different learning environments
- ii) Discuss the benefits and challenges of global citizenship and internationalisation

iii) Explain how their perspective on their academic discipline has been influenced by locating it within an international setting.

In addition, students who complete 'Physics with Astrophysics with International Year' will be able to:

- iv) Communicate effectively in an international setting;
- v) Reflect on previous learning within an international context.

These learning outcomes will all be assessed by the submission of a satisfactory individual learning agreement, the successful completion of assessments at the partner institution and the submission of the reflective portfolio element of the international year module.

Course Regulations

Students registered for the 'Physics with Astrophysics with International Year' are subject to the course specific regulations (if any) and the University regulations. In addition, during the International Year, the following regulations will apply:

Students undertaking the International Year must complete 120 credits, which must comprise at least 40% in the student's discipline area.

This may impact on your choice of modules to study, for example you will have to choose certain modules to ensure you have the discipline specific credits required.

Students are barred from studying any Physics with Astrophysics module with significant overlap to Level 6 modules to be studied on their return. Significant overlap with Level 5 modules previously studied should also be avoided.

Additional costs for the International Year

Tuition fees for students on the International Year will be charged at 15% of the annual tuition fees for that year of study, as set out in Section 1. The International Year can be included in your Student Finance allocation, to find out more about your personal eligibility see: www.gov.uk

Students will have to bear the costs of travelling to and from their destination university, accommodation, food and personal costs. Depending on the destination they are studying at additional costs may include visas, study permits, residence permits, and compulsory health checks. Students should expect the total costs of studying abroad be greater than if they study in the UK, information is made available from the Global Education Team throughout the process, as costs will vary depending on destination.

Students studying in Erasmus+ destinations may be eligible for grants as part of this programme. Students studying outside of this programme may be eligible income dependent bursaries at Keele.

Students travel on a comprehensive Keele University insurance plan, for which there are currently no additional charges. Some Governments and/or universities require additional compulsory health coverage plans; costs for this will be advised during the application process.